Raise3D Premium PLA Technical Data Sheet

Raise3D Premium PLA is a premium PLA designed for all desktop FDM/FFF printers. It ensures consistent extrusion and prevents nozzle jams.

Physical Properties¹

Property	Testing Method	Typical Value
Density (g/cm³ at 21.5 °C)	ASTM D792 (ISO 1183, GB/T 1033)	1.2
Glass transition temperature (°C)	DSC, 10 °C /min	62.3
Vicat Softening temperature (°C)	ASTM D1525 (ISO 306 GB/T 1633)	62.7
Melt index (g/10 min)	210 °C, 2.16 kg	6.0
Melting temperature (°C)	DSC, 10 °C/min	150.9

Note:

Tested with 3D printed specimen of 100% infill.

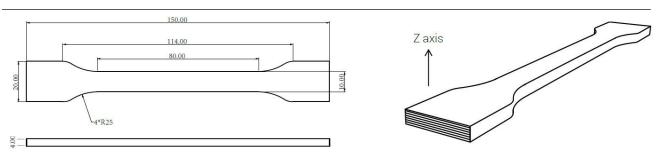
Mechanical Properties¹

Property	Testing Method	Typical Value
Young's modulus (MPa, X - Y)	ASTM D638 (ISO 527, GB/T 1040)	2681 ± 215
Tensile strength (MPa, X - Y)	ASTM D638 (ISO 527, GB/T 1040)	40 ± 1
Elongation at break (%, X - Y)	ASTM D638 (ISO 527, GB/T 1040)	2.5 ± 0.6
Bending modulus (MPa, X - Y)	ASTM D790 (ISO 178, GB/T 9341)	2700 ± 154
Bending strength (MPa, X - Y)	ASTM D790 (ISO 178, GB/T 9341)	68 ± 2
Impact strength (KJ/m², X - Y)	ASTM D256 (ISO 179, GB/T 1043)	13.4 ±1.2
Tensile strength (MPa, Z)	ASTM D638 (ISO527, GB/T 1040	36 ± 5
Young's modulus (MPa, Z)	ASTM D638 (ISO527, GB/T 1040	2551 ± 335
Elongation at break (%, Z)	ASTM D638 (ISO527, GB/T 1040	6.0 ± 2.4

Note:

All testing specimens were printed under the following conditions:

nozzle temperature = $210 \, ^{\circ}$ C, printing speed = $45 \, \text{mm/s}$, build plate temperature = $25 \, ^{\circ}$ C, infill = 100% All specimens were conditioned at room temperature for 24h prior to testing.


Recommended Printing Conditions¹

Parameter	Recommended Setting		
Nozzle temperature (°C)	190 - 220		
Recommended build surface	BuildTak®, Blue Tap		
Build plate temperature (°C)	30-60		
Model cooling fan	Turned on		
Printing speed (mm/s)	30 - 70		
Retraction distance (mm)	1 - 3		
Retraction speed (mm/s)	30 - 60		
Recommended environmental temperature (°C)	Room temperature - 45		
Threshold overhang angle (°)	45		
Recommended support materials	Raise3D Premium PVA		
Other Comments			
Premium PLA can be printed under conditions similar to most other PLA filaments			

Note:

Based on 0.4 mm nozzle and ideaMaker. Printing conditions may vary with different nozzle diameters.

Testing Geometries

Fig 1. Tensile testing specimen

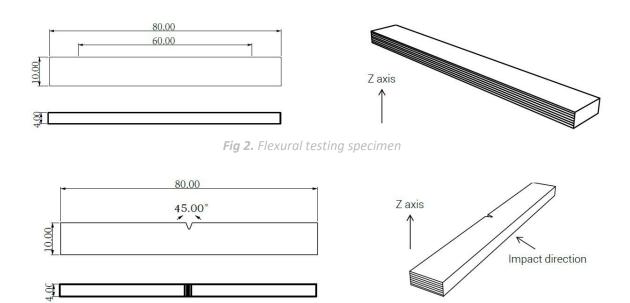


Fig 3. Impact testing specimen

Disclaimer

The typical values presented in this data sheet are intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. Actual values may vary significantly with printing conditions. Enduse performance of printed parts depends not only on materials, but also on part design, environmental conditions, printing conditions, etc. Product specifications are subject to change without notice.

Each user is responsible for determining the safety, lawfulness, technical suitability, and disposal/recycling practices of Raise3D materials for the intended application. Raise3D makes no warranty of any kind, unless announced separately, to the fitness for any particular use or application. Raise3D shall not be made liable for any damage, injury or loss induced from the use of Raise3D materials in any particular application.

